The derivative of
sech(x) is
−sech(x)tanh(x). We will prove that with the first principle of derivatives.
Proof. Let
f(x)=sech(x)=ex+e−x2. Then using the first principle of derivatives, we get:
f′(x)=h→0limhf(x+h)−f(x)=h→0limhsech(x+h)−sech(x)=h→0limhex+h+e−x−h2−(ex+e−x)(ex+h+e−x−h)2=h→0limhex+h+e−x−h2(ex+e−x)−2(ex+h+e−x−h)=2h→0limh(ex+h+e−x−h)(ex+e−x)ex+e−x−ex+h−e−x−h=2h→0limh(ex+h+e−x−h)(ex+e−x)ex+e−x−ex+h−e−x−h=2h→0limh(ex+h+e−x−h)(ex+e−x)ex(1−eh)+e−x(1−e−h)=2h→0limh(ex+h+e−x−h)(ex+e−x)ex(1−eh)+2h→0limh(ex+h+e−x−h)(ex+e−x)e−x(1−e−h)=2exh→0limh(ex+h+e−x−h)(ex+e−x)1−eh+2e−xh→0limh(ex+h+e−x−h)(ex+e−x)1−e−h
Let’s check the first part:
2exh→0limh(ex+h+e−x−h)(ex+e−x)1−eh=2exh→0limh1−eh⋅h→0lim(ex+h+e−x−h)(ex+e−x)1=2exh→0limh1−eh⋅(ex+e−x)21=(ex+e−x)22exh→0limh1−eh.
We have seen
here that
limh→0h1−eh=−limh→0heh−1=−1. So we get
f′(x)=−(ex+e−x)22ex+2e−xh→0limh(ex+h+e−x−h)(ex+e−x)1−e−h.
For the second part, we have:
2e−xh→0limh(ex+h+e−x−h)(ex+e−x)1−e−h=(ex+e−x)22e−xh→0limh1−e−h
Again, we saw
here that
limh→0h1−e−h=−limh→0he−h−1=1 if we apply the Maclaurin series. So we get together:
f′(x)=−(ex+e−x)22ex+(ex+e−x)22e−x=−(ex+e−x)22(ex−e−x)=−sech(x)ex+e−xex−e−x=−sech(x)tanh(x).
So we get indeed that the derivative of
sech(x) is
−sech(x)tanh(x).