You are currently viewing Derivative of Hyperbolic Secant using First Principle of Derivatives
Derivative of Hyperbolic Secant using First Principle of Derivatives

Derivative of Hyperbolic Secant using First Principle of Derivatives

The derivative of \text{sech}(x) is -\text{sech}(x)\tanh(x). We will prove that with the first principle of derivatives.

Proof. Let f(x) = \text{sech}(x) = \frac{2}{e^x + e^{-x}}. Then using the first principle of derivatives, we get:
\begin{align*}
f'(x) &= \lim_{h \rightarrow 0} \frac{f(x+h) - f(x)}{h} \\ 
&= \lim_{h \rightarrow 0} \frac{\text{sech}(x + h) - \text{sech}(x)}{h} \\
&= \lim_{h \rightarrow 0} \frac{\frac{2}{e^{x + h} + e^{-x-h}} - \frac{2}{(e^x + e^{-x})(e^{x + h} + e^{-x-h})}}{h} \\
&= \lim_{h \rightarrow 0} \frac{\frac{2(e^x + e^{-x}) - 2(e^{x + h} + e^{-x-h})}{e^{x + h} + e^{-x-h}}}{h} \\
&= 2 \lim_{h \rightarrow 0} \frac{\frac{e^x + e^{-x} - e^{x + h} - e^{-x-h}}{(e^{x + h} + e^{-x-h})(e^x + e^{-x})}}{h} \\
&= 2 \lim_{h \rightarrow 0} \frac{e^x + e^{-x} - e^{x + h} - e^{-x-h}}{h(e^{x + h} + e^{-x-h})(e^x + e^{-x})} \\
&= 2 \lim_{h \rightarrow 0} \frac{e^x(1 - e^{h}) + e^{-x}(1 - e^{-h})}{h(e^{x + h} + e^{-x-h})(e^x + e^{-x})} \\
&= 2 \lim_{h \rightarrow 0} \frac{e^x(1 - e^{h})}{h(e^{x + h} + e^{-x-h})(e^x + e^{-x})} + 2\lim_{h \rightarrow 0} \frac{e^{-x}(1 - e^{-h})}{h(e^{x + h} + e^{-x-h})(e^x + e^{-x})} \\
&= 2e^x\lim_{h \rightarrow 0} \frac{1 - e^{h}}{h(e^{x + h} + e^{-x-h})(e^x + e^{-x})} + 2e^{-x}\lim_{h \rightarrow 0} \frac{1 - e^{-h}}{h(e^{x + h} + e^{-x-h})(e^x + e^{-x})} \\
\end{align*}
Let’s check the first part:
\begin{align*}
& 2e^x\lim_{h \rightarrow 0} \frac{1 - e^{h}}{h(e^{x + h} + e^{-x-h})(e^x + e^{-x})} = \\
& 2e^x\lim_{h \rightarrow 0} \frac{1 - e^{h}}{h} \cdot \lim_{h \rightarrow 0}\frac{1}{(e^{x + h} + e^{-x-h})(e^x + e^{-x})} = \\
& 2e^x\lim_{h \rightarrow 0} \frac{1 - e^{h}}{h} \cdot \frac{1}{(e^x + e^{-x})^2} = \\
& \frac{2e^x}{(e^x + e^{-x})^2}\lim_{h \rightarrow 0} \frac{1 - e^{h}}{h}.
\end{align*}
We have seen here that \lim_{h \rightarrow 0} \frac{1 - e^{h}}{h} = - \lim_{h \rightarrow 0} \frac{e^{h} - 1}{h} = -1. So we get
\begin{align*}
f'(x) = -\frac{2e^x}{(e^x + e^{-x})^2} + 2e^{-x}\lim_{h \rightarrow 0} \frac{1 - e^{-h}}{h(e^{x + h} + e^{-x-h})(e^x + e^{-x})}.
\end{align*}
For the second part, we have:
\begin{align*}
& 2e^{-x}\lim_{h \rightarrow 0} \frac{1 - e^{-h}}{h(e^{x + h} + e^{-x-h})(e^x + e^{-x})} = \\
& \frac{2e^{-x}}{(e^x + e^{-x})^2} \lim_{h \rightarrow 0} \frac{1 - e^{-h}}{h}
\end{align*}
Again, we saw here that \lim_{h \rightarrow 0} \frac{1 - e^{-h}}{h} = - \lim_{h \rightarrow 0} \frac{e^{-h} - 1}{h} = 1 if we apply the Maclaurin series. So we get together:
\begin{align*}
f'(x) &= -\frac{2e^x}{(e^x + e^{-x})^2} + \frac{2e^{-x}}{(e^x + e^{-x})^2} \\
&= -\frac{2(e^x - e^{-x})}{(e^x + e^{-x})^2} \\
&= -\text{sech}(x) \frac{e^x - e^{-x}}{e^x + e^{-x}} \\
&= -\text{sech}(x)\tanh(x).
\end{align*}
So we get indeed that the derivative of \text{sech}(x) is -\text{sech}(x)\tanh(x).

Leave a Reply