You are currently viewing Derivative of Hyperbolic Cosecant using First Principle of Derivatives
Derivative of Hyperbolic csch(x) using First Principle of Derivatives

Derivative of Hyperbolic Cosecant using First Principle of Derivatives

The derivative of \text{csch}(x) is -\text{csch}(x)\text{coth}(x) using first principle of derivatives.

Proof. Let f(x) = \text{csch}(x) = \frac{2}{e^x - e^{-x}}. Then we use the first principle of derivatives to determine \text{sech}(x):
\begin{align*}
f'(x) &= \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h} \\
&= \lim_{h \rightarrow 0} \frac{\text{csch}(x + h) - \text{csch}(x)}{h} \\
&= \lim_{h \rightarrow 0} \frac{\frac{2}{e^{x + h} - e^{-x - h}} - \frac{2}{e^x - e^{-x}}}{h} \\
&= \lim_{h \rightarrow 0} \frac{\frac{2e^{x} - 2e^{-x} - 2e^{x + h} + 2e^{-x - h}}{(e^{x + h} - e^{-x - h})(e^{x} - e^{-x})}}{h} \\
&= 2 \cdot \lim_{h \rightarrow 0} \frac{\frac{e^{x} - e^{-x} - e^{x + h} + e^{-x - h}}{(e^{x + h} - e^{-x - h})(e^{x} - e^{-x})}}{h} \\
&= \frac{2}{e^{x} - e^{-x}} \cdot \lim_{h \rightarrow 0} \frac{\frac{e^{x} - e^{-x} - e^{x + h} + e^{-x - h}}{e^{x + h} - e^{-x - h}}}{h} \\
&= \text{csch}(x) \cdot \lim_{h \rightarrow 0} \frac{\frac{e^{x} - e^{-x} - e^{x + h} + e^{-x - h}}{e^{x + h} - e^{-x - h}}}{h} \\
&= \text{csch}(x) \cdot \lim_{h \rightarrow 0} \frac{e^{x} - e^{-x} - e^{x + h} + e^{-x - h}}{h(e^{x + h} - e^{-x - h})} \\
&= \text{csch}(x) \cdot \lim_{h \rightarrow 0} \frac{1}{e^{x + h} - e^{-x - h}} \cdot \lim_{h \rightarrow 0} \frac{e^{x} - e^{-x} - e^{x + h} + e^{-x - h}}{h} \\
&= \text{csch}(x) \cdot \frac{1}{e^{x} - e^{-x}} \cdot \lim_{h \rightarrow 0} \frac{e^{x} - e^{-x} - e^{x + h} + e^{-x - h}}{h} \\
&= \text{csch}(x) \cdot \frac{1}{e^{x} - e^{-x}} \cdot \lim_{h \rightarrow 0} \frac{e^{x}(1 - e^{h}) - e^{-x}(1 - e^{-h})}{h} \\
&= -\text{csch}(x) \cdot \frac{1}{e^{x} - e^{-x}} \cdot \lim_{h \rightarrow 0} \frac{e^{x}(e^{h} - 1) - e^{-x}(e^{-h} - 1)}{h}. \\
\end{align*}
We want to determine the RHS of the above equation:
\begin{align*}
\lim_{h \rightarrow 0} \frac{e^{x}(e^{h} - 1) - e^{-x}(e^{-h} - 1)}{h} &= \lim_{h \rightarrow 0} \frac{e^{x}(e^{h} - 1)}{h} - \lim_{h \rightarrow 0} \frac{e^{-x}(e^{-h} - 1)}{h} \\
&= e^{x} \cdot \lim_{h \rightarrow 0} \frac{(e^{h} - 1)}{h} - e^{-x} \cdot \lim_{h \rightarrow 0} \frac{(e^{-h} - 1)}{h} \\
\end{align*}
We know from here that \lim_{h \rightarrow 0} \frac{(e^{h} - 1)}{h} = 1 and \lim_{h \rightarrow 0} \frac{(e^{-h} - 1)}{h} = -1. So we get
\begin{align*}
\lim_{h \rightarrow 0} \frac{e^{x}(e^{h} - 1) - e^{-x}(e^{-h} - 1)}{h} = e^{x} + e^{-x}.
\end{align*}
Putting everything together, we get:
\begin{align*}
f'(x) &= -\text{csch}(x) \cdot \frac{1}{e^{x} - e^{-x}} \cdot (e^{x} + e^{-x}) \\
&= -\text{csch}(x) \cdot \frac{e^{x} + e^{-x}}{e^{x} - e^{-x}} \\
&= -\text{csch}(x) \text{coth}(x).
\end{align*}
So, the derivative of \text{csch}(x) is -\text{csch}(x)\text{coth}(x) using first principle of derivatives.

Leave a Reply