You are currently viewing Derivative of csc(x) using First Principle of Derivatives
Derivative of csc(x)

Derivative of csc(x) using First Principle of Derivatives

Using the first principle of derivatives, we will show that the derivative of \csc(x) is equal to -\csc(x)\cot(x). In other words, \frac{d}{dx}\cot(x) = -\csc(x)\cot(x). The \csc is also called the cosecant.

Proof. Let f(x) = \csc(x) = \frac{1}{\sin(x)}. Then
\begin{align*}
f'(x) &= \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h} \\
&= \lim_{h \rightarrow 0} \frac{\csc(x + h) - \csc(x)}{h} \\
&= \lim_{h \rightarrow 0} \frac{\frac{1}{\sin(x + h)} - \frac{1}{\sin(x)}}{h} \\
&= \lim_{h \rightarrow 0} \frac{\frac{\sin(x) - \sin(x + h)}{\sin(x + h)\sin(x)}}{h}
\end{align*}
We will use the following identity
\begin{align*}
\sin(A) - \sin(B) = 2\cos(\frac{A + B}{2})\sin(\frac{A - B}{2}).
\end{align*}
This results
\begin{align*}
\sin(x) - \sin(x + h) = 2\cos(\frac{2x + h}{2})\sin(\frac{-h}{2}).
\end{align*}
Therefore, we get the following equality
\begin{align*}
\lim_{h \rightarrow 0} \frac{\frac{2\cos(\frac{2x + h}{2})\sin(\frac{-h}{2})}{\sin(x + h)\sin(x)}}{h} &= \lim_{h \rightarrow 0} \frac{\sin(-h/2)}{h/2} \cdot \lim_{h \rightarrow 0} \frac{\cos(\frac{2x + h}{2})}{\sin(x + h)\sin(x)} \\
&= -1 \cdot \lim_{h \rightarrow 0} \frac{\cos(\frac{2x + h}{2})}{\sin(x + h)\sin(x)} \\
&= -1 \cdot \frac{\cos(x)}{\sin^2(x)} \\
&= - \frac{1}{\sin(x)\tan(x)} \\
&= - \csc(x)\cot(x)
\end{align*}
where we have seen that \lim_{h \rightarrow 0} \frac{\sin(-h/2)}{h/2} = -1 \cdot \lim_{h \rightarrow 0} \frac{\sin(h/2)}{h/2} = -1, \frac{1}{\sin(x)} = \csc(x) and \frac{1}{\tan(x)} = \cot(x). So we have that f'(x) = -\csc(x)\cot(x).

Leave a Reply