Proof. Let f(x) = \csc(x) = \frac{1}{\sin(x)}. Then
\begin{align*} f'(x) &= \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h} \\ &= \lim_{h \rightarrow 0} \frac{\csc(x + h) - \csc(x)}{h} \\ &= \lim_{h \rightarrow 0} \frac{\frac{1}{\sin(x + h)} - \frac{1}{\sin(x)}}{h} \\ &= \lim_{h \rightarrow 0} \frac{\frac{\sin(x) - \sin(x + h)}{\sin(x + h)\sin(x)}}{h} \end{align*}
\begin{align*} \sin(A) - \sin(B) = 2\cos(\frac{A + B}{2})\sin(\frac{A - B}{2}). \end{align*}
\begin{align*} \sin(x) - \sin(x + h) = 2\cos(\frac{2x + h}{2})\sin(\frac{-h}{2}). \end{align*}
\begin{align*} \lim_{h \rightarrow 0} \frac{\frac{2\cos(\frac{2x + h}{2})\sin(\frac{-h}{2})}{\sin(x + h)\sin(x)}}{h} &= \lim_{h \rightarrow 0} \frac{\sin(-h/2)}{h/2} \cdot \lim_{h \rightarrow 0} \frac{\cos(\frac{2x + h}{2})}{\sin(x + h)\sin(x)} \\ &= -1 \cdot \lim_{h \rightarrow 0} \frac{\cos(\frac{2x + h}{2})}{\sin(x + h)\sin(x)} \\ &= -1 \cdot \frac{\cos(x)}{\sin^2(x)} \\ &= - \frac{1}{\sin(x)\tan(x)} \\ &= - \csc(x)\cot(x) \end{align*}