You are currently viewing Derivative of cot(x) using First Principle of Derivatives
Derivative of cot(x)

Derivative of cot(x) using First Principle of Derivatives

Using the First Principle of Derivatives, we will prove that the derivative of cot(x)\cot(x) is equal to 1/sin2(x)-1/\sin^2(x). The derivative of cotangent is easier to prove if we take its identity, which is the inverse of the tangent.

Proof. Let f(x)=cot(x)=1tan(x)=cos(x)sin(x)f(x) = \cot(x) = \frac{1}{\tan(x)} = \frac{\cos(x)}{\sin(x)}. Then
f(x)=limh0f(x+h)f(x)h=limh0cot(x+h)cot(x)h=limh0cos(x+h)sin(x+h)cos(x)sin(x)h=limh0cos(x+h)sin(x)sin(x+h)cos(x)sin(x+h)sin(x)h\begin{align*} f'(x) &= \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h} \\ &= \lim_{h \rightarrow 0} \frac{\cot(x + h) - \cot(x)}{h} \\ &= \lim_{h \rightarrow 0} \frac{\frac{\cos(x + h)}{\sin(x + h)} - \frac{\cos(x)}{\sin(x)}}{h} \\ &= \lim_{h \rightarrow 0} \frac{\frac{\cos(x + h)\sin(x) - \sin(x + h)\cos(x)}{\sin(x + h)\sin(x)}}{h} \end{align*}
We will take the following identity
sin(AB)=sin(A)cos(B)cos(A)sin(B).\begin{align*} \sin(A - B) = \sin(A)\cos(B) - \cos(A)\sin(B). \end{align*}
Applying that to our case, then we get the following equality
cos(x+h)sin(x)sin(x+h)cos(x)=sin(h).\begin{align*} \cos(x + h)\sin(x) - \sin(x + h)\cos(x) = \sin(-h). \end{align*}
Since limh0sin(h)h=limh0sin(h)h=1\lim_{h \rightarrow 0} \frac{\sin(-h)}{h} = -\lim_{h \rightarrow 0} \frac{\sin(h)}{h} = -1 which we have seen here, we get:
limh0sin(h)sin(x+h)sin(x)h=limh0sin(h)hlimh01sin(x+h)sin(x)=limh01sin(x+h)sin(x)=1sin2(x)=csc2(x).\begin{align*} \lim_{h \rightarrow 0} \frac{\frac{\sin(-h)}{\sin(x + h)\sin(x)}}{h} &= \lim_{h \rightarrow 0} \frac{\sin(-h)}{h} \cdot \lim_{h \rightarrow 0} \frac{1}{\sin(x + h)\sin(x)} \\ &= - \lim_{h \rightarrow 0} \frac{1}{\sin(x + h)\sin(x)} \\ &= - \frac{1}{\sin^2(x)} \\ &= - \csc^2(x). \end{align*}
Therefore, we have that f(x)=1sin2(x)=csc2(x)f'(x) = - \frac{1}{\sin^2(x)} = -\csc^2(x).

Leave a Reply