Proof. Let f(x) = x. Then we will use the definition of a derivative:
\begin{align*} f'(x) &= \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h} \\ &= \lim_{h \rightarrow 0} \frac{x + h - x}{h} \\ &= \lim_{h \rightarrow 0} \frac{h}{h} \\ &= \lim_{h \rightarrow 0} 1 \\ &= 1. \end{align*}
\begin{align*} f'(x) = 1. \end{align*}