Proof 1. Let F(x) = \cos^2(x), f(u) = u^2 and g(x) = \cos(x) such that F(x) = f(g(x)). We will use the chain rule:
\begin{align*} F'(x) = f'(g(x))g'(x). \end{align*}
\begin{align*} f'(g(x)) = 2g(x) = 2\cos(x) \quad \text{and} \quad g'(x) = -\sin(x). \end{align*}
\begin{align*} F'(x) = f'(g(x))g'(x) = -2\cos(x)\sin(x). \end{align*}
\begin{align*} f'(x) = 2\cos(x)\sin(x). \end{align*}
\begin{align*} \cos^2(x) = \cos(x)\cos(x) \end{align*}
\begin{align*} (\cos(x)\cos(x))' = (\cos(x))'\cos(x) + \cos(x)(\cos(x))' \end{align*}
\begin{align*} (\cos(x))'\cos(x) + \cos(x)(\cos(x))' = -\sin(x)\cos(x) - \cos(x)\sin(x). \end{align*}
\begin{align*} f'(x) &= (\cos(x)\cos(x))' \\ &= (\cos(x))'\cos(x) + \cos(x)(\cos(x))' \\ &= -\sin(x)\cos(x) - \cos(x)\sin(x) \\ &= -2\cos(x)\sin(x). \end{align*}