Proof. We would like to prove the next limit:
\begin{equation*} \lim_{x \rightarrow 0}\frac{\cos(x) - 1}{x} = 0 \end{equation*}
\begin{equation*} \cos(x) = 1 - 2\sin^2(x/2) \end{equation*}
\begin{align*} \lim_{h \rightarrow 0}\frac{\cos(x) - 1}{x} &= \lim_{x \rightarrow 0}\frac{- 2\sin^2(x/2)}{x} \\ &= \lim_{x \rightarrow 0}\frac{- 2\sin^2(x/2)}{x} \\ &= -\lim_{x \rightarrow 0}\frac{\sin(x/2)}{x/2} \cdot \lim_{x \rightarrow 0} sin(x/2) \\ &= (-1) \cdot 0 = 0. \end{align*}
\begin{align*} \cos(x) &= \sum_{n = 0}^{\infty} \frac{(-1)^n}{(2n)!}x^{2n} \\ &= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots \end{align*}
\begin{align*} \lim_{x \rightarrow 0}\frac{\cos(x) - 1}{x} &= \lim_{x \rightarrow 0}\frac{- \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots}{x} \\ &= \lim_{x \rightarrow 0} - \frac{x}{2!} + \frac{x^3}{4!} - \cdots \\ &= 0 \end{align*}