Proof. We start with the identity group \{e\}. This is straightforward as we get geg^{-1} = gg^{-1} = e \in \{e\} for all g \in G. Therefore \{e\} is a normal subgroup. Next, we will look at the subgroups of order 2, i.e., \{e, (12)\}, \{e, (13)\} and \{e, (23)\}. We see that none of them are normal subgroups:
\begin{align*} (13)(12)(31) &= (23) \not \in \{e,(12)\} \\ (23)(13)(32) &= (12) \not \in \{e,(13)\} \\ (12)(23)(21) &= (13) \not \in \{e,(23)\} \\ \end{align*}
\begin{align*} e(123)e &= (123) \\ (12)(123)(21) &= (132) \\ (13)(123)(31) &= (132) \\ (23)(123)(32) &= (132) \\ (123)(123)(321) &= (123) \\ (132)(123)(231) &= (123) \\ \end{align*}
\begin{align*} e(132)e &= (132) \\ (12)(132)(21) &= (123) \\ (13)(132)(31) &= (123) \\ (23)(132)(32) &= (123) \\ (123)(132)(321) &= (132) \\ (132)(132)(231) &= (132) \\ \end{align*}