Prove that the ring M_2(\mathbb{R}) contains a subring that is isomorphic to \mathbb{C}.
We will prove that M_2(\mathbb{R}) contains a subring that is isomorphic to \mathbb{C}.Proof of that M_2(\mathbb{R}) contains a subring that is isomorphic to \mathbb{C}.
Let S be a subring defined as\begin{align*} S = \{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \ | \ a,b\in \mathbb{R} \}\end{align*}
\begin{align*} \phi: S &\longrightarrow \mathbb{C} \\ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} &\longmapsto a+b\sqrt{-1} = a+bi. \end{align*}
Homomorphism
Let’s have the following matrices:
s_1 = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \longmapsto a + bi \quad \text{and} \quad s_2 = \begin{pmatrix} c & d \\ -d & c \end{pmatrix} \longmapsto c + di.
\begin{align*} \phi(s_1) + \phi(s_2) &= a + bi + c + di \\ &= (a + c) + (b+d)i \\ &= \phi(s_1 + s_2). \end{align*}
\begin{align*} s_1s_2 = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \begin{pmatrix} c & d \\ -d & c \end{pmatrix} = \begin{pmatrix} ac - bd & ad + bc \\ -(ad + bc) & ac - bd \end{pmatrix} \longmapsto (ac - bd) + (ad + bc)i \end{align*}
\begin{align*} \phi(s_1)\phi(s_2) = (a + bi)(c + di) = (ac - bd) + (ad + bc)i. \end{align*}
Injective
To check if it is injective, its kernel must be equal to the empty matrix. Notice that a + bi \iff a = -bi. Since a ,b \in \mathbb{R}, it must be the case that a = b = 0. So we do have indeed that the kernel is the empty matrix.
Surjective
This is already clear by definition since
S = \{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \ | \ a,b\in \mathbb{R} \}
\begin{align*} \mathbb{C} = \{a+bi \ | \ a,b\in \mathbb{R}, \ i^2 = -1 \}. \end{align*}