Solution. We need to find out what the integral of \cos(\ln(x)) is, that is:
\begin{align*} I = \int \cos(\ln(x)) dx. \end{align*}
\begin{align*} \int UdV = UV - \int VdU. \end{align*}
\begin{align*} U = \cos(\ln(x)), \quad &dV = dx\\ dU = \frac{-\sin(\ln(x))}{x}dx, \quad &V = x. \end{align*}
\begin{align*} \int \cos(\ln(x)) dx = x\cos(\ln(x)) + \int \sin(\ln(x))dx. \end{align*}
\begin{align*} U = \sin(\ln(x)), \quad &dV = dx\\ dU = \frac{\cos(\ln(x))}{x}dx, \quad &V = x. \end{align*}
\begin{align*} \int \cos(\ln(x)) dx &= x\sin(\ln(x)) + \int \sin(\ln(x))dx \\ &= x\cos(\ln(x)) + x\sin(\ln(x)) - \int \cos(\ln(x))dx \\ &= x\cos(\ln(x)) + x\sin(\ln(x)) - I. \end{align*}
\begin{align*} \int \cos(\ln(x)) dx = \frac{1}{2}x(\cos(\ln(x)) + \sin(\ln(x))) + C. \end{align*}