Solution. We will use the chain rule to find out what the derivative of F(x) = f(g(x)) = \cos(\ln(x)) is. In other words, we will use the following:
\begin{align*} F'(x) = f'(g(x))g'(x), \end{align*}
\begin{align*} f'(g(x)) = -\sin(g(x)) = -\sin(\ln(x)). \end{align*}
\begin{align*} F'(x) &= f'(g(x))g'(x) \\ &= -\sin(\ln(x))\frac{1}{x} \\ &= -\frac{\sin(\ln(x))}{x}. \end{align*}