Solution. We want to determine the integral of \ln(x):
\begin{align*} \int \ln(x) dx. \end{align*}
\begin{align*} \int UdV = UV - \int VdU, \end{align*}
\begin{align*} U = \ln(x), \quad &dV = dx\\ dU = \frac{1}{x}dx, \quad &V = x. \end{align*}
\begin{align*} \int \ln(x) dx &= x\ln(x) - \int x \cdot \frac{1}{x} dx \\ &= x \ln(x) - \int dx \\ &= x \ln(x) - x + C. \end{align*}