You are currently viewing What is the integral of sec^3(x)?
integral of sec^3(x)

What is the integral of sec^3(x)?

The integral of \sec^3(x) is \frac{1}{2} \sec(x) \tan(x) + \frac{1}{2}\ln \lvert \sec(x) + \tan(x) + C.

Solution. We want to determine the integral of \sec^3(x), i.e.:
\begin{align*}
I = \int \sec^3(x) dx.
\end{align*}
Notice that we assign the integral of \sec^3(x) as I, where we see later why we do this on purpose. We will now integrate by parts, so we will use the following formula:
\begin{align*}
\int UdV = UV - \int VdU,
\end{align*}
where we have the following equations:
\begin{align*}
U = \sec(x), \quad &dV = \sec^2(x)dx\\
dU = \sec(x)\tan(x)dx, \quad &V = \tan(x).
\end{align*}
You can verify yourself here for dU, and here for V. So we get the following:
\begin{align*}
I &= \int \sec^3(x) dx \\
&= \sec(x)\tan(x) - \int \sec(x)\tan^2(x)dx.
\end{align*}
We have seen here that \tan^2(x) = \sec^2(x) - 1. So we get:
\begin{align*}
\sec(x)\tan(x) - \int \sec(x)\tan^2(x) &= \sec(x)\tan(x) - \int \sec(x)(\sec^3(x) - 1)dx \\
&=  \sec(x)\tan(x) - \int \sec^3(x)dx  + \int \sec(x)dx \\
&=  \sec(x)\tan(x) - I + \ln \lvert \sec(x) + \tan(x) \rvert,
\end{align*}
where we have seen here the integral of \sec(x). Now we will bring I to the left-hand side, and so, we get the integral of \sec^3(x):
\begin{align*}
I &= sec(x)\tan(x) - I + \ln \lvert \sec(x) + \tan(x) \rvert \iff \\
2I &= \sec(x)\tan(x) + \ln \lvert \sec(x) + \tan(x) \rvert \iff \\
\int \sec^3(x)dx &= \frac{1}{2} \sec(x)\tan(x) + \frac{1}{2}\ln \lvert \sec(x) + \tan(x) \rvert + C
\end{align*}

Leave a Reply