You are currently viewing What is the integral of (e^x + 1)/(e^x – 1)?
what is the integral of (e^x + 1)/(e^x - 1)

What is the integral of (e^x + 1)/(e^x – 1)?

The integral of ex+1ex1\frac{e^x + 1}{e^x - 1} is 2lnex1x+C2\ln\lvert e^x - 1 \rvert - x + C.

Solution. We want to determine the integral of ex+1ex1\frac{e^x + 1}{e^x - 1}, i.e.:
ex+1ex1dx=exex1dx+1ex1dx.\begin{align*} \int \frac{e^x + 1}{e^x - 1} dx = \int \frac{e^x}{e^x - 1} dx + \int \frac{1}{e^x - 1} dx. \end{align*}
First we will determine exex1dx\int \frac{e^x}{e^x - 1} dx. We will use the substitution method. So take u=ex1u = e^x - 1. Then we saw here that du=exdxdu = e^x dx. Therefore, we get the following:
exex1dx=duu=lnu+C1=lnex1+C1,\begin{align*} \int \frac{e^x}{e^x - 1} dx &= \int \frac{du}{u} \\ &= \ln \lvert u \rvert + C_1 \\ &= \ln \lvert e^x - 1 \rvert + C_1, \end{align*}
where C1C_1 is some constant. Now what is left is to determine 1ex1dx\int \frac{1}{e^x - 1} dx. This integral is difficult to determine, but we make it easy by using the following handy adjustment:
1ex1dx=1ex(1ex)dx=ex1exdx.\begin{align*} \int \frac{1}{e^x - 1} dx = \int \frac{1}{e^x(1 - e^{-x})} dx = \int \frac{e^{-x}}{1 - e^{-x}} dx. \end{align*}
Now we will apply the substitution method. Let v=1exv = 1 - e^{-x}. Then we saw here that dv=exdxdv = e^{-x} dx. So we get the following:
ex1exdx=dvv=lnv+C2=ln1ex+C2=lnex(ex1)+C2=lnex+ex1+C2=x+ex1+C2,\begin{align*} \int \frac{e^{-x}}{1 - e^{-x}} dx &= \int \frac{dv}{v} \\ &= \ln \lvert v \rvert + C_2 \\ &= \ln \lvert 1 - e^{-x} \rvert + C_2 \\ &= \ln \lvert e^{-x}(e^x - 1) \rvert + C_2 \\ &= \ln \lvert e^{-x} \rvert + \lvert e^{-x} - 1 \rvert + C_2 \\ &= -x + \lvert e^{-x} - 1 \rvert + C_2, \end{align*}
where C2C_2 is some constant. Now we will combine everything together:
ex+1ex1dx=exex1dx+1ex1dx=lnex1+C1x+ex1+C2=2lnex1x+C,\begin{align*} \int \frac{e^x + 1}{e^x - 1} dx &= \int \frac{e^x}{e^x - 1} dx + \int \frac{1}{e^x - 1} dx \\ &= \ln \lvert e^x - 1 \rvert + C_1 -x + \lvert e^{-x} - 1 \rvert + C_2 \\ &= 2\ln\lvert e^x - 1 \rvert - x + C, \end{align*}
where C=C1+C2C = C_1 + C_2. So, the integral of ex+1ex1\frac{e^x + 1}{e^x - 1} is 2lnex1x+C2\ln\lvert e^x - 1 \rvert - x + C.

Leave a Reply