You are currently viewing What is the integral of cot^2(x)?
integral of cot^2(x)

What is the integral of cot^2(x)?

The integral of \cot^2(x) is - x - \cot(x).

Proof. We want to determine the integral of \cot^2(x):
\begin{align*}
\int \cot^2(x) dx.
\end{align*}
We have seen here that \cot^2(x) = \csc^2(x) - 1. So we get:
\begin{align*}
\int \cot^2(x) dx &= \int (\csc^2(x) - 1)dx \\
&= \int \csc^2(x)dx - \int 1\cdot dx.
\end{align*}
Further, we saw here that the integral of \csc^2(x) is -\cot(x) plus some constant. So, we get:
\begin{align*}
\int \cot^2(x) dx &= \int (\csc^2(x) - 1)dx \\
&= \int \csc^2(x)dx - \int 1\cdot dx \\
&= -\cot(x) - x + C.
\end{align*}
Therefore, the integral of \cot^2(x) is -\cot(x) - x.

Leave a Reply