The function
tan2(x)+1 is equal to
sec2(x).
Proof. We have seen
here that:
sin2(x)+cos2(x)=1.
Now multiply both sides with
cos2(x)1 gives us:
cos2(x)sin2(x)+1=cos2(x)1.
We do know that
cos2(x)sin2(x)=tan2(x) and
cos2(x)1=sec2(x). Therefore, we get the following:
tan2(x)+1=sec2(x).
Therefore,
tan2(x)+1 is equal to
sec2(x).