You are currently viewing Prove that tan^2(x) + 1 = sec^2(x)
tan^2(x) + 1 = sec^2(x)

Prove that tan^2(x) + 1 = sec^2(x)

The function tan2(x)+1\tan^2(x) + 1 is equal to sec2(x)\sec^2(x).

Proof. We have seen here that:
sin2(x)+cos2(x)=1.\begin{align*} \sin^2(x) + \cos^2(x) = 1. \end{align*}
Now multiply both sides with 1cos2(x)\frac{1}{\cos^2(x)} gives us:
sin2(x)cos2(x)+1=1cos2(x).\begin{align*} \frac{\sin^2(x)}{\cos^2(x)} + 1 = \frac{1}{\cos^2(x)}. \end{align*}
We do know that sin2(x)cos2(x)=tan2(x)\frac{\sin^2(x)}{\cos^2(x)} = \tan^2(x) and 1cos2(x)=sec2(x)\frac{1}{\cos^2(x)} = \sec^2(x). Therefore, we get the following:
tan2(x)+1=sec2(x).\begin{align*} \tan^2(x) + 1 = \sec^2(x). \end{align*}
Therefore, tan2(x)+1\tan^2(x) + 1 is equal to sec2(x)\sec^2(x).

Leave a Reply