You are currently viewing What is the integral of tan(x)?
integral of tan(x)

What is the integral of tan(x)?

The integral of \tan(x) is \ln \lvert \sec(x) \rvert + C.

Proof. We know that \tan(x) = \frac{\sin(x)}{\cos(x)}. So we get:
\begin{align*}
\int \tan(x) dx = \int \frac{\sin(x)}{\cos(x)} dx.
\end{align*}
Now we will apply the substitution method. Let u = \cos(x). Then we get:
\begin{align*}
\frac{d}{dx} u = -\sin(x) \iff du = -\sin(x)dx.
\end{align*}
Together, we have that:
\begin{align*}
\int \tan(x) dx &= \int \frac{\sin(x)}{\cos(x)} dx \\
&= \int \frac{-1}{u} du \\
&= - \ln \lvert u \rvert + C \\
&= - \ln \lvert \cos(x) \rvert + C \quad \text{since } u = \cos(x)  \\
&=   \ln \lvert \frac{1}{\cos(x)} \rvert + C \\
&=   \ln \lvert \sec(x) \rvert + C.
\end{align*}
Therefore, the integral of \tan(x) is \ln \lvert \sec(x) \rvert + C.

Leave a Reply