The derivative of
arcsec(x) is
∣x∣x2−11.
Solution. Let
F(x)=sec−1(x)=arcsec(x) with
∣x∣≥1. We have seen
here that
F(x)=sec−1(x)=cos−1(1/x).
Now let
f(u)=cos−1(u) and
g(x)=1/x such that
F(x)=f(g(x)). To determine the derivative
sec−1, we neet to use the chain rule:
F′(x)=f′(g(x))g′(x).
We know from
here that:
f′(u)=dudcos−1(u)=1−u2−1
and from
here that:
g′(x)=−x21.
So we get:
f′(g(x))=1−g(x)2−1=1−x21−1.
Combining everything, we get:
F′(x)=f′(g(x))g′(x)=1−x21−1(−x21)=x211−x211=x21x2x2−11=x21x2−1x2=x21x2−1∣x∣=∣x∣1x2−11=∣x∣x2−11.
Therefore we get:
F′(x)=dxdarcsec(x)=dxdsec−1(x)=∣x∣x2−11.
So, the derivative of
arcsec(x) is
∣x∣x2−11.