You are currently viewing What is the Derivative of arcsec(x)?
Derivative of arcsec(x)

What is the Derivative of arcsec(x)?

The derivative of arcsec(x)\text{arcsec}(x) is 1xx21\frac{1}{\lvert x \rvert \sqrt{x^2 - 1}}.

Solution. Let F(x)=sec1(x)=arcsec(x)F(x) = \sec^{-1}(x) = \text{arcsec}(x) with x1\lvert x \rvert \geq 1. We have seen here that
F(x)=sec1(x)=cos1(1/x).\begin{align*} F(x) = \sec^{-1}(x) = \cos^{-1}(1/x). \end{align*}
Now let f(u)=cos1(u)f(u) = \cos^{-1}(u) and g(x)=1/xg(x) = 1/x such that F(x)=f(g(x))F(x) = f(g(x)). To determine the derivative sec1\sec^{-1}, we neet to use the chain rule:
F(x)=f(g(x))g(x).\begin{align*} F'(x) = f'(g(x))g'(x). \end{align*}
We know from here that:
f(u)=dducos1(u)=11u2\begin{align*} f'(u) = \frac{d}{du} \cos^{-1}(u) = \frac{-1}{\sqrt{1 - u^2}} \end{align*}
and from here that:
g(x)=1x2.\begin{align*} g'(x) = -\frac{1}{x^2}. \end{align*}
So we get:
f(g(x))=11g(x)2=111x2.\begin{align*} f'(g(x)) = \frac{-1}{\sqrt{1 - g(x)^2}} = \frac{-1}{\sqrt{1 - \frac{1}{x^2}}}. \end{align*}
Combining everything, we get:
F(x)=f(g(x))g(x)=111x2(1x2)=1x2111x2=1x21x21x2=1x2x2x21=1x2xx21=1x1x21=1xx21.\begin{align*} F'(x) &= f'(g(x))g'(x) \\ &= \frac{-1}{\sqrt{1 - \frac{1}{x^2}}} \Bigg(-\frac{1}{x^2}\Bigg) \\ &= \frac{1}{x^2} \frac{1}{\sqrt{1 - \frac{1}{x^2}}} \\ &= \frac{1}{x^2} \frac{1}{\sqrt{\frac{x^2 - 1}{x^2}}} \\ &= \frac{1}{x^2} \frac{\sqrt{x^2}}{\sqrt{x^2 - 1}} \\ &= \frac{1}{x^2} \frac{\lvert x \rvert}{\sqrt{x^2 - 1}} \\ &= \frac{1}{\lvert x \rvert} \frac{1}{\sqrt{x^2 - 1}} \\ &= \frac{1}{\lvert x \rvert \sqrt{x^2 - 1}}. \end{align*}
Therefore we get:
F(x)=ddxarcsec(x)=ddxsec1(x)=1xx21.\begin{align*} F'(x) = \frac{d}{dx} \text{arcsec}(x) = \frac{d}{dx} \sec^{-1}(x) = \frac{1}{\lvert x \rvert \sqrt{x^2 - 1}}. \end{align*}
So, the derivative of arcsec(x)\text{arcsec}(x) is 1xx21\frac{1}{\lvert x \rvert \sqrt{x^2 - 1}}.

Leave a Reply