Proof. Let F(x) = \log_a^2(x), f(u) = u^2 and g(x) = \log_a(x) such that F(x) = f(g(x)). We will use the chain rule:
\begin{align*} F'(x) = f'(g(x))g'(x). \end{align*}
\begin{align*} f'(u) = 2u \quad \text{and} \quad g'(x) = \frac{1}{x\ln(a)}. \end{align*}
\begin{align*} h'(x) &= f'(g(x))g'(x) \\ &= 2 \cdot \log_a(x) \cdot \frac{1}{x\ln(a)} \\ &= \frac{2\log_a(x)}{x\ln(a)}. \end{align*}