Proof. Take \phi: G \longrightarrow G and
\begin{align*} \ker(\phi) = \{a\in G \ | \ \phi(a) = e\}, \end{align*}
\begin{align*} \phi(gag^{-1}) &= \phi(g)\phi(a)\phi(g^{-1}) \quad \text{because kernel is a homomorphism} \\ &= \phi(g)\phi(a)\phi(g)^{-1}\\ &= \phi(g)e\phi(g)^{-1} \\ &= \phi(g)\phi(g)^{-1} \\ &= e. \end{align*}