You are currently viewing What is the derivative of csc(x)?
derivative of csc(x)

What is the derivative of csc(x)?

We will see that the derivative of \csc(x) is -\csc(x)\cot(x).

Proof. Let F(x) = \csc(x) = \frac{1}{\sin(x)}, f(u) = \frac{1}{u} and g(x) = \sin(x) such that F(x) = f(g(x)). Then we will use the chain rule:
\begin{align*}
F'(x) = f'(g(x))g'(x).
\end{align*}
We have seen earlier that here that g'(x) = \frac{d}{dx} \sin(x) = \cos(x) and f'(u) = \frac{-1}{u^2}. So we get
\begin{align*}
f'(g(x)) = \frac{-1}{g(x)^2} = \frac{-1}{\sin^2(x)} \quad \text{and} \quad g'(x) = \cos(x).
\end{align*}
Wrapping everything together, we get
\begin{align*}
F'(x) &= f'(g(x))g'(x) \\
&= \frac{-1}{\sin^2(x)}\cdot \cos(x) \\
&= -\frac{\cos(x)}{\sin^2(x)} \\
&= -\frac{\cos(x)}{\sin(x)}\frac{1}{\sin(x)} \\
&= -\csc(x) \frac{1}{\cos(x)} \\
&= -\csc(x)\cot(x)
\end{align*}
In conclusion, the derivative of \csc(x) is -\csc(x)\cot(x).

Leave a Reply