Proof. Let F(x) = \csc(x) = \frac{1}{\sin(x)}, f(u) = \frac{1}{u} and g(x) = \sin(x) such that F(x) = f(g(x)). Then we will use the chain rule:
\begin{align*} F'(x) = f'(g(x))g'(x). \end{align*}
\begin{align*} f'(g(x)) = \frac{-1}{g(x)^2} = \frac{-1}{\sin^2(x)} \quad \text{and} \quad g'(x) = \cos(x). \end{align*}
\begin{align*} F'(x) &= f'(g(x))g'(x) \\ &= \frac{-1}{\sin^2(x)}\cdot \cos(x) \\ &= -\frac{\cos(x)}{\sin^2(x)} \\ &= -\frac{\cos(x)}{\sin(x)}\frac{1}{\sin(x)} \\ &= -\csc(x) \frac{1}{\cos(x)} \\ &= -\csc(x)\cot(x) \end{align*}