You are currently viewing Derivative of Hyperbolic Cotangent using First Principle of Derivatives
Derivative of coth(x) using First Principle of Derivatives

Derivative of Hyperbolic Cotangent using First Principle of Derivatives

We will see that the derivative of \coth(x) is -\text{csch}^2(x) by using the first principle of derivatives.

Proof. Let f(x) = \coth(x) = \frac{\cosh(x)}{\sinh(x)} = \frac{e^x + e^{-x}}{e^x - e^{-x}}. Then
\begin{align*}
f'(x) &= \lim_{h \rightarrow 0} \frac{f(x+h) - f(x)}{h} \\ 
&= \lim_{h \rightarrow 0} \frac{\coth(x + h) - \coth(x)}{h} \\
&= \lim_{h \rightarrow 0} \frac{\frac{e^{x + h} + e^{-x-h}}{e^{x + h} - e^{-x-h}} - \frac{e^x + e^{-x}}{e^x - e^{-x}}}{h} \\
&= \lim_{h \rightarrow 0} \frac{\frac{(e^{x + h} + e^{-x-h})(e^x - e^{-x}) - (e^{x + h} - e^{-x-h})(e^x + e^{-x})}{(e^{x + h} - e^{-x-h})(e^x - e^{-x})}}{h} \\
&= \lim_{h \rightarrow 0} \frac{(e^{x + h} + e^{-x-h})(e^x - e^{-x}) - (e^{x + h} - e^{-x-h})(e^x + e^{-x})}{h(e^{x + h} - e^{-x-h})(e^x - e^{-x})} \\
&= \lim_{h \rightarrow 0} \frac{e^{2x + h} - e^{h} + e^{-h} - e^{-2x-h} - e^{2x + h} - e^{h} + e^{-h} + e^{-2x-h}}{h(e^{x + h} - e^{-x-h})(e^x - e^{-x})} \\
&= \lim_{h \rightarrow 0} \frac{-2e^{h} + 2e^{-h}}{h(e^{x + h} - e^{-x-h})(e^x - e^{-x})} \\
&= \lim_{h \rightarrow 0} \frac{2}{(e^{x + h} - e^{-x-h})(e^x - e^{-x})} \cdot \lim_{h \rightarrow 0} \frac{- e^{h} + e^{-h}}{h} \\
&= \frac{2}{(e^{x} - e^{-x})(e^x - e^{-x})} \cdot \lim_{h \rightarrow 0} \frac{- e^{h} + e^{-h}}{h} \\
&= \frac{2}{(e^{x} - e^{-x})^2} \cdot \lim_{h \rightarrow 0} \frac{- e^{h} + e^{-h}}{h} \\
\end{align*}
We still need to figure out what \lim_{h \rightarrow 0} \frac{- e^{h} + e^{-h}}{h} is. We can apply an easy trick: - e^{h} + e^{-h} = e^{h} - 1 + 1 - e^{-h}. So
\begin{align*}
\lim_{h \rightarrow 0} \frac{e^{h} - e^{-h}}{h} &= \lim_{h \rightarrow 0} \frac{- e^{h} - 1 + 1 + e^{-h}}{h} \\
&= - \lim_{h \rightarrow 0} \frac{e^{h} - 1}{h} + \lim_{h \rightarrow 0} \frac{e^{-h} - 1}{h}
\end{align*}
Because \lim_{h \rightarrow 0} \frac{e^{h} - 1}{h} = 1 which we have seen in article, and that \lim_{h \rightarrow 0} \frac{e^{-h} - 1}{h} is equal to -1, as we could substitute -h in the Maclaurin series, we do have:
\begin{align*}
- \lim_{h \rightarrow 0} \frac{e^{h} - 1}{h} - \lim_{h \rightarrow 0} \frac{e^{-h} - 1}{h} = - 1 + (-1) = -2.
\end{align*}
Continuing where we have been, we get
\begin{align*}
\frac{2}{(e^{x} - e^{-x})^2} \cdot \lim_{h \rightarrow 0} \frac{-e^{h} + e^{-h}}{h} = \frac{2}{(e^{x} - e^{-x})^2} \cdot -2 = -\frac{2^2}{(e^{x} - e^{-x})^2}
\end{align*}
Therefore, we get
\begin{align*}
f'(x) = -\frac{2^2}{(e^{x} - e^{-x})^2} = -\text{csch}^2(x)
\end{align*}
which completes the proof.

Leave a Reply